Institut für Baustoffe
-
DFWind - Deutsche Forschungsplattform für Windenergie – Phase 1+Die Verlängerung des Verbundprojekts DFWind zur Installation und Instrumentierung einer Forschungswindenergieanlage in Kooperation mit dem DLR und FORWind. Das Institut für Baustoffe konzeptioniert in diesem Zusammenhang ein umfangsreiches Monitoringsystem zur Erfassung der Verformungen entlang der Schnittstelle zwischen Turmfuß, Vergussfuge und Fundament.Leitung: Univ.-Prof. Dr.-Ing. Michael Haist, Univ.-Prof. Dr.-Ing. Ludger LohausTeam:Jahr: 2018Förderung: BMWiLaufzeit: 18 Monate
-
Grout-WATCH – Untersuchung des Tragverhaltens von Offshore-Grout-Verbindungen unter Wasser an Tragstrukturen mit dynamischen WechselwirkungenDurch den Einsatz von faseroptischer Messtechnik wird erstmals der Schädigungsmechanismus innerhalb einer Grouted-Joint-Verbindung infolge zyklischer Beanspruchung erfasst. Somit sollen Rückschlüsse auf den Zustand des verwendeten Hochvergussmörtels, dem sogenannten Grout, während der Betriebsphase einer Offshore-Windenergieanlage gezogen werden.Leitung: Univ.-Prof. Dr.-Ing. Michael HaistTeam:Jahr: 2020Förderung: BMWiLaufzeit: 36 Monate
-
DFWind - Deutsche Forschungsplattform für Windenergie – Phase 2In der zweiten Phase des BMWi geförderten Projekts wird eine Forschungswindenergieanlage vom Institut für Baustoffe mit Messsensorik ausgestattet. Hierdurch werden Verformungsänderungen innerhalb der Mörtelfuge sowie an der Schnittstelle zwischen dem Turmfuß und dem Fundament bei der Errichtung als auch während der Betriebsphase erfasst.Leitung: Univ.-Prof. Dr.-Ing. Michael Haist, Univ.-Prof. Dr.-Ing. Ludger LohausTeam:Jahr: 2020Förderung: BMWiLaufzeit: 36 Monate
-
Degradationsprozesse in hochfestem Beton infolge mehrstufiger DruckschwellbelastungIn diesem DFG-Projekt wird die Schädigungsentwicklung von hochfesten Betonen unter zyklischen, mehrstufigen Belastungen untersucht. Ziel ist es, die Schädigungsprozesse im Betongefüge besser zu verstehen, insbesondere bei den in der Realität auftretenden, wech-selnden Ermüdungsbelastungen. Es werden grundlegende Erkenntnisse als Basis für Progno-semodelle ermittelt. Neben der Analyse von Schädigungsindikatoren wie Dehnungsentwick-lung, Steifigkeitsentwicklung und Schallemission werden mikrostrukturelle Untersuchungen an zuvor ermüdungsbeanspruchten Proben durchgeführt. Die Kombination von Analyseme-thoden auf verschiedenen Skalenebenen dient dazu, das Verständnis der Schädigungsprozes-se unter Berücksichtigung unterschiedlicher Oberspannungsszenarien auf den Beton deutlich zu erweitern.Leitung: Dr.-Ing. Nadja OneschkowTeam:Jahr: 2023Förderung: DFG - Deutsche ForschungsgemeinschaftLaufzeit: 36 Monate